

MECANIQUE DU SOLIDE

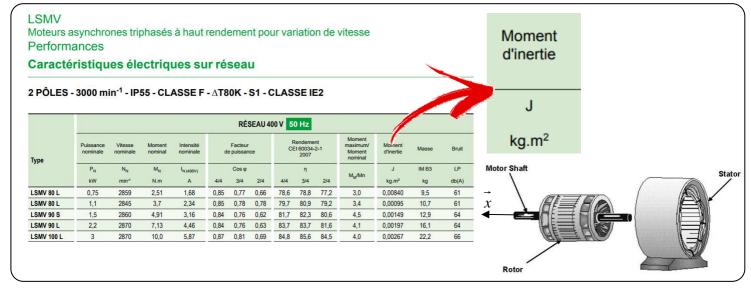
Moment d'inertie

Chapitre 5

EXERCICES

Feuille n°5

EXERCICE 1 (éléments de cours à connaître par cœur)


a)	Que caractérise le moment d'inertie ?
b)	Unité MKS du moment d'inertie :
c)	Pour un solide en rotation, plus sa matière est loin de l'axe de rotation, plus son moment d'inertie est :
	☐ grand ☐ petit
EX	ERCICE 2 (contextes d'utilisation du moment d'inertie ; à connaître par cœur)
CONTEXTE 1 : Le moment d'inertie intervient en <u>dynamique du solide en rotation</u> .	
a)	Rappeler le Principe Fondamental de la Dynamique (PFD) :

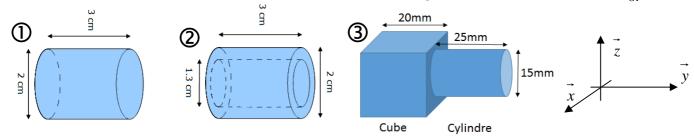
<u>Cas fréquent (à connaître)</u>: un moteur se compose d'un stator, fixe, et d'un rotor, c'est la partie tournante avec généralement un arbre en acier et des bobinages en cuivre ; tout ceci représente une masse mais aussi un moment d'inertie par rapport à l'axe de rotation (GX). Ce moment d'inertie est généralement noté I_{GX} ou

 $\boldsymbol{J}_{\mathit{GX}}$ et sa valeur est fournie directement par le constructeur du moteur :

⇒ Théorème de la résultante dynamique :

⇒ Théorème du moment dynamique :

- b) Pour les trois premières références du tableau, calculer en $rad \cdot s^{-2}$ l'accélération angulaire $\alpha_{rotor/stator}$ par application rapide du PFD.
 - L'accélération sera supposée constante et on considèrera que le couple développé est le couple nominal.
 - Le moteur fonctionne sans charge (à vide).
- c) On souhaite augmenter l'inertie totale de 20 % en ajoutant un disque plein d'épaisseur $e=30\ mm$. Calculer le diamètre de ce disque.


CONTEXTE 2 : Le moment d'inertie intervient en énergétique.

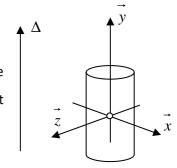
Un solide possédant un mouvement de rotation dispose d'une énergie cinétique de rotation.

a) Pour les trois premières références du tableau, calculer en J l'énergie cinétique du rotor. Les vitesses de rotation nominales seront considérées.

EXERCICE 3

On considère les trois géométries suivantes en acier. Calculer en $kg\cdot cm^2$ leur moment d'inertie I_{GV} .

EXERCICE 4


On considère un cylindre (1) en acier de diamètre $d_I=70\ mm$, de hauteur $h=150\ mm$, de centre de gravité G , d'axe X et de moment d'inertie $I_{GX(I)}$.

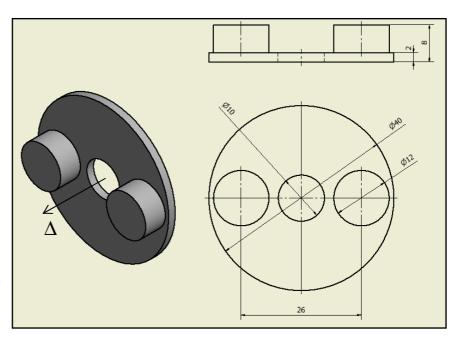
On considère également une sphère (2) en acier de diamètre d_2 et de moment d'inertie $I_{GX(2)}$.

Calculer en mm le diamètre de la sphère qui vérifie l'égalité $I_{GX(I)} = I_{GX(2)}$.

EXERCICE 5 (théorème de Huygens)

On considère un cylindre en aluminium d'axe Y . Il a un diamètre d=100~mm et une hauteur h=40~mm , un centre de gravité G . Un axe Δ est parallèle à l'axe $\left(GY\right)$ et distant de $\lambda=80~mm$.

- a) Placer la cote λ sur la figure ci-contre.
- b) Calculer en kg la masse M du cylindre.
- c) Calculer en $kg \cdot m^2$ son moment d'inertie I_{GY} .
- d) Calculer en $kg\cdot m^2$ son moment d'inertie I_Δ .


EXERCICE 6 (théorème de Huygens)

On considère une pièce de révolution en alliage léger dont la géométrie est donnée ci-contre.

a) Calculer en $kg\cdot m^2$ son moment d'inertie $I_{G\Delta}\,.$

La pièce est montée sur l'arbre du moteur LSMV80L.

b) Calculer en $kg\cdot m^2$ l'inertie totale I_{total} .

